Problem 16

Suppose a large number of particles are bouncing back and forth between $x=0$ and $x=1$, except that at each endpoint some escape. Let r be the fraction reflected each time; then $(1-r)$ is the fraction escaping. Suppose the particles start at $x=0$ heading toward $x=1$; eventually all particles will escape. Write an infinite series for the fraction which escape at $x=1$ and similarly for the fraction which escape at $x=0$. Sum both the series. What is the largest fraction of the particles which can escape at $x=0$? (Remember that r must be between 0 and 1.)
[TYPOS: Change "are" to "is," change "escape" to "escapes," and change "escape" to "escapes."]

Solution

The schematic below illustrates the fraction of particles that reflects and passes through each time a wall is hit.

At the start the fraction of particles present is $1.1(r)$ reflects back, and $1(1-r)$ passes through. Of the r of particles, $r(r)$ reflects back, and $r(1-r)$ passes through. This continues indefinitely.

Fraction of Particles Passing Through $x=0 \quad$ Fraction of Particles Passing Through $x=1$

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} r^{2 n+1}(1-r) & \sum_{n=0}^{\infty} r^{2 n}(1-r) \\
\sum_{n=0}^{\infty}\left(r^{2}\right)^{n} r(1-r) & \sum_{n=0}^{\infty}\left(r^{2}\right)^{n}(1-r) \\
r(1-r) \sum_{n=0}^{\infty}\left(r^{2}\right)^{n} & (1-r) \sum_{n=0}^{\infty}\left(r^{2}\right)^{n} \\
r(1-r)\left[\frac{1}{1-\left(r^{2}\right)}\right] & (1-r)\left[\frac{1}{1-\left(r^{2}\right)}\right] \\
r(1-r)\left[\frac{1}{(1+r)(1-r)}\right] & (1-r)\left[\frac{1}{(1+r)(1-r)}\right] \\
\frac{r}{1+r} & \frac{1}{1+r}
\end{array}
$$

Below is a plot of these two functions versus r. Note that $r \neq 1$.

The largest fraction of particles that can leave through $x=0$ is $1 / 2$ as $r \rightarrow 1$.

